a12 bionic vs snapdragon 855
Thôngsố kỹ thuật và điểm chuẩn so sánh CPU Apple A12 Bionic vs. Qualcomm Snapdragon 855 - Geekbench 5, Cinebench R20, Cinebench R15 and FP32 iGPU (GFLOPS)
Jämförelsemellan Apple A12 Bionic-processor och Snapdragon 855 Den har introducerat Qualcomms flaggskepps mobila processorer och är den första mobilklara 5G-chipset. En sensation förutom det har Snapdragon 855 nya Kryo CPU-kärnor, en energieffektiv 7nm tillverkningsprocess och ett uppgraderat X24 LTE-modem.
Especificaçõese benchmarks de comparação de CPU Apple A12 Bionic vs. Qualcomm Snapdragon 855 - Geekbench 5, Cinebench R20, Cinebench R15 and FP32 iGPU (GFLOPS)
目高通骁龙 855 在CPU天梯排行榜中的综合得分是63,而苹果 A12 Bionic处理器的综合得分是69。. 通过对比两个CPU在AnTuTu和Geekbench等基准测试中跑分差异和基本参数信息,可以得出以下结论:. 高通 骁龙 855处理器的Geekbench 5单核跑分低0.71倍. 高通 骁龙 855处理器的
Singlecore performance with the M2 is around 11.56% faster than the M1 chip. Apr 13, 2022 · Apple M1 vs Apple A14 Bionic: 3. Apple M1 vs Intel Core i7-10875H: 4. Apple M1 vs Intel Core i5-1038NG7: 5. Apple M1 vs Intel Core i7-1185G7: 6. Apple M1 vs Apple A12Z Bionic: 7. Apple M1 vs AMD Ryzen 5 5600X: 8. Apple M1 vs AMD Ryzen
Lirik Chord Tak Ingin Usai. Qualcomm’s latest flagship mobile processor is the first 5G ready mobile chipset. Apart from that, the Snapdragon 855 carries new Kryo CPU cores, a power efficient 7nm fabrication process, and an upgraded X24 LTE modem. We don’t have to wait for long since the new Samsung Galaxy S10 is one of the flagships to house matter how much we try, we can’t help but compare the Snapdragon 855 chipset with Apple A12 Bionic in the iPhones. The slightly older A12 Bionic processor powers most of the 2018 iPhones, including the iPhone XR and the iPhone XS. The A12 Bionic is one of the first mobile processors to be manufactured using the 7nm fabrication process. It delivers a faster graphics performance and an enhanced Neural we’re comparing these two top-tier processors of 2019 at least for now to chart out their similarities as well as dive into the That MatterPropertyApple A12 BionicSnapdragon 855PropertyApple A12 BionicSnapdragon 855Design Process7nm7nmArchitecture64-bit64-bitCPU6-core processor 2x Performance cores + 4x Efficiency cores8 x Kryo 485 CPUs clocked up to GHzGPUApple-designed 4-core GPUAdreno 640CameraApple’s ISPDual 14-bit CV-ISPs, Spectra 380 ISPChargingWireless charging, Normal Charging via USBQualcomm Quick Charge 4+Performance ImprovementsThe A12 Bionic and the Snapdragon 855 processors are based on the 64-bit microarchitecture and manufactured through the 7nm fabrication process. A smaller process node boosts the overall performance and the power efficiency of the chipset. Well, that’s the only similarity between both the A12 Bionic adopts a six-core CPU configuration — two Performance cores and four Efficiency A12 Bionic only brings a relative bump in performance and not too significant one when compared to the A11 Bionic. So you’ll notice that the app launches are a bit faster owing to the smart compute system. Also, A12 Bionic is more power efficient and consumes less the 6-core CPU implementation of the A12, the Snapdragon 855 has 8-core configuration. Qualcomm has opted for a tri-cluster arrangement, instead of the regular two cluster Snapdragon 855 sports eight Kryo 845 cores clustered across a single Prime’ Cortex A76 core clocked at GHz, three Performance’ Cortex-A76 cores clocked at GHz and lastly four Efficiency’ Cortex-A55 cores clocked at GHz. These clusters are designed for high performance, high efficiency, improved task-sharing capacities and low latency addition to that, the Snapdragon 855’s Prime core has a 512KB L2 cache and is coupled with performance core’s 256KB L2 caches and the efficiency core’s 128KB L2 cache. These L2 Caches work together to push the information way quickly and without any interruptions by acting as a bridge between the processor and the the GPU front, the Snapdragon 855 bundles the Adreno 640 GPU which offers a 20 percent boost in gaming graphics and can handle 4K HDR10+ playback. That’s what Qualcomm TestsWell, the benchmark scores may not accurately translate to the real world experience. But at the end of the day, these scores help portray the potential of a chip in numbers. Hence, a peek into the benchmark scores helps gauge the true prowess of a A12 Bionic-Powered iPhone XRAs per the folks at Tom’s Guide, the Snapdragon 855 scored 3,552 single-core points and 11,196 multi-core points on Geekbench 4 benchmark tests. On the other hand, the Apple iPhone XS powered by the A12 Bionic clocked 4,701 single-core and 11,420 multi-core in multi-core on the same benchmark difference is quite slim in multi-core tests but is significant differences in single-core BionicSnapdragon 855PropertyA12 BionicSnapdragon 855Single-core Geekbench 4 Score4,7013,552Multi-core Geekbench 4 Score11,42011,196Artificial IntelligenceArtificial Intelligence or AI plays an integral part in the chipsets of 2018-19. When it comes to the Snapdragon 855, it bundles a 4th generation multi-core AI Engine to power the AI-related tasks. It’s worth noting that this engine is a combination of the Hexagon 690 processor, the Kyro CPU, and the Adreno GPU. If we talk numbers, it’s capable of handling up to 7 trillion AI operations per Snapdragon 855’s Hexagon 690 DSP is upgraded to handle more complex AI tasks. And combined with a dedicated tensor accelerator, the DSP gives the chipset a threefold gain in machine learning the many advantages of this AI engine, a few notable ones include scene detection, super resolutions in snapshots, face authentication, dual and single-camera bokeh, and text new chipset also supports AI frameworks like Google’s TensorFlow, Facebook’s Caffe 2, and the Open Neural Network Exchange ONNX.As opposed to Qualcomm’s 4-core AI engine, Apple bundles an 8-core Neural Engine in its A12 Bionic processor. And it can perform a whopping 5 trillion AI operations per from tasks like face detection or making predictions based on your actions, the key task of this processor is resource allocation which we mentioned above. It smartly computes where to run algorithms on the GPU, the processor or in the neural engine. At the same time, it can even direct additional processing power where there are improvements like faster app launches, learning user habits, and real-time machine learning power. Apple claims that it can run Core ML nine times faster, while at the same time using only a small portion of the resources and battery Shutter GameToday, camera tech and AI walk hand-in-hand. That’s because cameras are now tapping into the power of the AI engine for producing images which are rich in details and are crisp as well as shot captured through the iPhone XRIn the case of the A12 Bionic processor, the neural engine helps to analyze shots in real-time and makes the changes accordingly. Plus, the enhanced ISP brings home minute details to photos. Along with that, the Smart HDR brings in quality dynamic the other hand, the Snapdragon 855 features the in-house Spectra 380 Image Signal Processor. Qualcomm claims that it is the world’s first AI-integrated Snapdragon 855-powered Galaxy S10 PlusThis gives the chip a gain when it comes to hardware depth sensing, object segmentation and object classification in real-time. For instance, your phone will be able to easily replace video or photo backgrounds in real time, among other Battle Cry Gets LouderApart from the key differences above, the Snapdragon 855’s main advantage is that it is 5G ready and one of the most noticeable upgrades will be the bump in speed. It also features the Snapdragon X24 LTE that can enable download speed up to 2Gbps and upload speed up to 316 Mbps. Plus, it also features the new Elite gaming mode to improve the overall gaming it comes to the performance, both are almost at par, with the A12 Bionic taking the lead in single core performance. But when it comes to being a future-ready chipset, the 855 fights hard for the top spot. Hopefully, the next generation Apple chipsets will challenge the Snapdragon 855 and bridge the up Intrigued by the new Samsung Exynos 9820 processor in the Galaxy S10 and S10 Plus? Read about the chipset’s features in detail from the link below.
Qualcomm Snapdragon 855 vs Apple A12 BionicQualcomm Snapdragon 855 ► remove from comparisonThe Qualcomm Snapdragon 855 Mobile Platform is a high-end smartphone and tablet SoC that Qualcomm announced in December 2018. The SoC integrates a fast Prime Core’ that clocks up to GHz and three further fast ARM Cortex-A76 performance cores, which can reach up to GHz. These are complemented by four power-saving ARM Cortex-A55 cores that clock up to a maximum of GHz. The higher Prime Core’ clock speed should provide significantly better single core performance than the Snapdragon 845, but we suspect that the Snapdragon 855 will fall short of the Apple A12 Bionic. The new SoC should have up to 45% faster single-core performance and 35% multi-core performance than its predecessor. Qualcomm praises the Snapdragon 855’s ability to maintain its performance when faced with sustained load, beating the Apple A12 Bionic SoC and the HiSilicon Kirin 980. The SoC also integrates the new X24 LTE modem that Qualcomm promises will deliver up to 2 Gbit/s maximum download speed over LTE and up to 316 Mbit/s upload speeds. The Snapdragon 855 can be configured with the company’s new X50 5G modem too. Qualcomm has also improved the integrated Wi-Fi modem, which is Wi-Fi 6-ready, has 8x8 Sounding and supports up to ay Wi-Fi. The Wi-Fi modem can utilise the 60 GHz mmWave band for up to 10 Gbit/s internet speeds. The Hexagon 690 DSP has undergone the most revisions of that which Qualcomm has integrated into the Snapdragon 855. The new DSP incorporates a neural processing unit NPU with dedicated Tensor-cores that can execute up to 7 trillion operations per second in conjunction with the CPU and GPU. In short, the Snapdragon 855 should be three times faster than the Snapdragon 845 and two times faster than the Kirin 980 SoC. The Snapdragon 855 also has a Spectra 380 ISP onboard, which is the world’s first chip to incorporate a Computer Vision Engine CV-ISP that can perform depth calculations in videos at up to 60 FPS. The Snapdragon 855 should deliver real-time portrait modes or be able to detect objects with relatively low power consumption. The built-in memory controller supports up to 16 GB LPDDR4x RAM 4 x 16-bit. Moreover, the Adreno 640 has 50% more compute units ALUs than the Adreno 630, while Qualcomm claims that it should be 20% faster than its predecessor. We currently do not know what clock speeds the Adreno 640 will operate at as Qualcomm did not announce these during the announcement of the Snapdragon 855. Qualcomm will manufacturer the Snapdragon 855 at the Taiwan Semiconductor Manufacturing Company TSMC using a 7 nm FinFET process. The switch to 7 nm manufacturing should make the SD855 20% more efficient than the SD845. Qualcomm has not officially announced the thermal design power TDP of the SD855, but we suspect that the SoC will reach a maximum of 5 W and will average around W under load. Apple A12 Bionic ► remove from comparisonThe Apple A12 Bionic is a System on a Chip SoC from Apple that is found in the iPhone Xs and Xr. It was announced late 2018 and offers 6 cores divided in 2 performance cores and four power efficiency cores. Compared to the previous A11 Bionic, the A12 should offer a 15% improved CPU performance for the performance cores and a 50% lower power consumption for the efficiency cores both according to Apple. The chip also includes a new GPU that is advertised as 50% faster, the M12 Motion co-processor and a Neural Engine with 8 cores for up to 5 trillion operations per second. With billion transistors, the A12 Bionic is a big chip especially compared to the Snapdragon 835 3 Billion or a Skylake desktop quad-core Soc Billion. Compared to the A11, the A12 integrates 60% more Rating - Geekbench PCM Work, Sling Shot Physics, Antutu v8 CPU - SD 855 3DMark - 3DMark Ice Storm Unlimited Physicsmin 20636 avg 32923 median 31198 26% max 45072 Points min 27400 avg 27548 median 27547 23% max 27717 Points 3DMark - 3DMark Sling Shot Extreme ES Unlimited Physicsmin 1934 avg 3937 median 4112 52% max 5024 Points min 2723 avg 3064 median 3056 38% max 3347 Points 3DMark - 3DMark Sling Shot ES Unlimited Physicsmin 2345 avg 3892 median 58% max 4703 Points min 2880 avg 3129 median 2961 42% max 3493 Points Geekbench - Geekbench - 64 Bit Single-Coremin 552 avg 713 median 744 32% max 751 Points min 1116 avg 1118 median 48% max 1119 Points Geekbench - Geekbench - 64 Bit Multi-Coremin 2164 avg 2622 median 2694 9% max 2856 Points min 2772 avg 2815 median 10% max 2857 Points Geekbench - Geekbench 64 Bit Single-Coremin 725 avg 742 median 742 3% max 750 Points Geekbench - Geekbench 64 Bit Multi-Coremin 2441 avg 2616 median 8% max 2852 Points Geekbench - - Geekbench - 64 Bit Single-Coremin 3406 avg 3480 median 3491 36% max 3537 Points min 4750 avg 4779 median 4774 49% max 4824 Points Geekbench - - Geekbench - 64 Bit Multi-Coremin 10187 avg 10955 median 12% max 11388 Points min 11244 avg 11418 median 11480 13% max 11598 Points Geekbench - Geekbench 64 Bit Single-Coremin 3295 avg 3548 median 3548 51% max 3801 Points Geekbench - Geekbench 64 Bit Multi-Coremin 10163 avg 10529 median 10529 26% max 10895 Points Geekbench 3 - Geekbench 3 32 Bit Multi-CoreGeekbench 3 - Geekbench 3 32 Bit Single-CoreGeekbench 3 - Geekbench 3 64 Bit Multi-CoreGeekbench 3 - Geekbench 3 64 Bit Single-CoreGeekbench 2 - 32 Bit - Geekbench Streammin 1658 avg 1926 median 1926 16% max 2194 Points Geekbench 2 - 32 Bit - Geekbench Memorymin 3919 avg 4247 median 4247 39% max 4575 Points Geekbench 2 - 32 Bit - Geekbench Floating Pointmin 11986 avg 14903 median 29% max 17819 Points Geekbench 2 - 32 Bit - Geekbench Integermin 5470 avg 6620 median 13% max 7769 Points Geekbench 2 - 32 Bit - Geekbench Total Scoremin 7059 avg 8575 median 22% max 10090 Points Mozilla Kraken - Kraken Total Score *min 1852 avg 2147 median 2114 2% max 2611 ms min 603 avg 627 median 1% max 653 ms Sunspider - Sunspider Total Score *Octane V2 - Octane V2 Total Scoremin 17011 avg 23240 median 23937 23% max 25640 Points min 41367 avg 42312 median 40% max 43280 Points WebXPRT 3 - WebXPRT 3 Scoremin 90 avg median 25% max 129 Points min 155 avg median 37% max 166 Points AnTuTu v6 - AnTuTu v6 Total Scoremin 239512 avg 255436 median 255924 87% max 268271 Points AnTuTu v7 - AnTuTu v7 MEMmin 9188 avg 13484 median 13816 42% max 19329 Points min 7312 avg 9998 median 31% max 12409 Points AnTuTu v7 - AnTuTu v7 UXmin 53266 avg 73247 median 74726 92% max 79058 Points min 59570 avg 65177 median 66701 82% max 67735 Points AnTuTu v7 - AnTuTu v7 GPUmin 67537 avg 152512 median 156467 49% max 191221 Points min 129473 avg 147840 median 151931 47% max 158023 Points AnTuTu v7 - AnTuTu v7 CPUmin 85969 avg 115207 median 118475 73% max 127208 Points min 106600 avg 124761 median 127986 78% max 136472 Points AnTuTu v7 - AnTuTu v7 Total Scoremin 217967 avg 354450 median 368232 65% max 398720 Points min 302955 avg 347775 median 358800 63% max 370545 Points AnTuTu v8 - AnTuTu v8 UXmin 51228 avg 63930 median 64229 54% max 72343 Points min 71574 avg 71607 median 60% max 71639 Points AnTuTu v8 - AnTuTu v8 MEMmin 52596 avg 61638 median 59373 48% max 75544 Points min 45962 avg 56767 median 56767 46% max 67572 Points AnTuTu v8 - AnTuTu v8 GPUmin 158097 avg 167704 median 167146 31% max 175532 Points min 166588 avg 170290 median 170290 31% max 173992 Points AnTuTu v8 - AnTuTu v8 CPUmin 114777 avg 135173 median 139365 50% max 140166 Points min 98561 avg 122385 median 122385 44% max 146209 Points AnTuTu v8 - AnTuTu v8 Total Scoremin 376698 avg 428445 median 432658 42% max 451559 Points min 411764 avg 421049 median 421048 41% max 430333 Points Antutu v9 - AnTuTu v9 Total ScoreAntutu v9 - AnTuTu v9 CPUPassMark PerformanceTest Mobile V1 - PerformanceTest Mobile V1 CPU Testsmin 197214 avg 236383 median 246456 32% max 265478 Points min 482773 avg 486852 median 486197 64% max 491585 Points PCMark for Android - PCM f. Android Computer Visionmin 5121 avg 6872 median 33% max 12391 Points PCMark for Android - PCM f. Android Storagemin 5578 avg 11793 median 11067 24% max 18491 Points PCMark for Android - PCM f. Android Work Score 8342 avg 9710 median 9664 63% max 11440 Points PCMark for Android - PCM f. Android Work Scoremin 10330 avg 12161 median 11890 59% max 14439 Points Average Benchmarks Qualcomm Snapdragon 855 → 100% n=23Average Benchmarks Apple A12 Bionic → 112% n=23 - Range of benchmark values for this graphics card - Average benchmark values for this graphics card* Smaller numbers mean a higher performance1 This benchmark is not used for the average 13. 1445400 checking url part for id 11011 +0s ... 0s 1 checking url part for id 10166 +0s ... 0s 2 not redirecting to Ajax server +0s ... 0s 3 did not recreate cache, as it is less than 5 days old! Created at Mon, 12 Jun 2023 135518 +0200 + ... 4 composed specs + ... 5 did output specs +0s ... 6 getting avg benchmarks for device 11011 + ... 7 got single benchmarks 11011 + ... 8 getting avg benchmarks for device 10166 + ... 9 got single benchmarks 10166 + ... 10 got avg benchmarks for devices +0s ... 11 No cached benchmark found, getting uncached values + ... 12 No cached benchmark found, getting uncached values + ... 13 min, max, avg, median took s + ... 14 return log + ... Redaktion, 2017-09- 8 Update 2017-09-11
As 5G technology draws nearer, chipset manufacturers are doing all they can to keep up. The Snapdragon 855 is the 5G chipset by Qualcomm. It’s fitted with the latest Kryo CPU cores, 7nm nodes, and an improved version of the X24 LTE modem. It offers similar features as Apple’s A12 Bionic chipset, which is being used for the latest iPhone smartphones. It’s leading 7nm chipsets that deliver impressive graphics performances and an improved Neural Engine. Let’s see how the two processors have a 64-bit microarchitecture and they are both made using the latest 7nm nodes. These are the smallest process nodes so far and they provide improved performances and better power efficiency, but that’s all they have in A12 Bionic has six cores divided into four efficiency and two performance processors. That results in faster app launches, better efficiency, and a quicker overall response time than the predecessor. Admittedly, the difference in response times is not that the other hand, the 855 has 8 cores arranged in three clusters. The 8 Kryo 845 cores are divided into one “Prime” Cortex A76 core with a working speed of Then, we have three “Performance” Cortex-A76 cores that are working at and four “Efficiency” Cortex-A55 cores that can provide up to The arrangement provides high performance, efficiency, and better task-sharing capabilities, as well as lower latency 855’s “Prime” core is fitted with a 512KB L2 cache, while the three “Performance” cores have the 256KB L2 caches, and the four “Efficiency” cores have 128KB L2 caches. They all work together by bridging the gap between the CPU and the RAM, which means they can handle all the information without talking about GPUs, the Snapdragon 855 packs the Adreno 640 Graphic Processing Unit that offers a significant boost and supports 4k HDR10+ playback. The A12 Bionic uses the Apple-designed 4-core GPU that can cope with all games and high-resolution videos and CameraThe Snapdragon 855 has a Spectra 380 ISP onboard. It’s the first chip of its kind that incorporates a Computer Vision Engine that allows depth calculations and 60FPS videos. It can deliver real-time portrait modes and detect objects that are far away without using too much power. Those benefits are only possible because the AI is infused with the A12 uses the Apple ISP camera feature, which offers enhanced ISP, advanced algorithms, and faster sensors. The Smart HDR feature provides high-resolution photos with more highlights and shadow Intelligence has changed the game since it became a standard feature for most mid-range and high-end smartphones. The 855 uses the 4th Gen multiple core Artificial Intelligence Engine for all AI tasks the engine combines the Kryo CPU with the Hexagon 690 CPU and the Adreno GPU. The feature can handle up to 7 trillion artificial intelligence operations per second. It works together with a dedicated tensor accelerator to improve AI learning for about 3 are many advantages to the new AI engine, including super-resolution snapshots, scene detection, face authentication, text recognition, and dual camera bokeh. The AI also supports Google TensorFlow, Open Neural Network Exchange ONNX, and Facebook Caffe took a completely different approach with its 8-core Neural Engine. The AI can perform 5 trillion operations every second, which is impressive, but it’s far behind the Snapdragon 855’s performs well when it comes to face recognition and predicting your moves based on what you do, and it is also responsible for resource allocation. The AI knows how to use the resources to run algorithms on the processor, the neural engine, and the GPU, and still has some processing power to spare for other processes. Other improvements include quicker app launching, improved machine learning, and learning user Final ResultThe Snapdragon 855 and Apple A12 chipsets are quite similar. However, the Snapdragon 855 wins because it’s the first 5G-ready chipset on the market. The new technology provides a significant speed improvement, and the 855’sX24 LTE provides download speeds up to 2Gbps and uploads of 316Mbps. It also comes with the Elite gaming mode for the best gaming experience A12 Bionic is a little better at single core performance. However, it’s not 5G-ready, which will be a problem soon. We are yet to see the new generation of 5G-ready Apple you prefer the A12 Bionic or the 855? What do you think about the 5G network that will soon be available all over the world? Share your thoughts in the comment section below.
VS We compared the 8-core Qualcomm Snapdragon 855 Adreno 640 with the older 6-core Apple A12 Bionic Apple A12 Bionic GPU SoC. Here you will find the pros and cons of each chip, technical specs, and comprehensive tests in benchmarks, like AnTuTu and Geekbench. ReviewDifferencesBenchmarksAnTuTu v9GeekBench 5GamingSpecsComments 6 Review General comparison of performance, power consumption, and other indicators CPU Performance Single and multi-core processor tests Gaming Performance GPU performance in games and OpenCL/Vulcan Battery life Efficiency of battery consumption NanoReview Score Overall chip score Key Differences Main differences and advantages of each chip Pros of Qualcomm Snapdragon 855 Performs 61% better in floating-point computationsHas 2 more cores14% higher CPU clock speed 2840 vs 2490 MHz Pros of Apple A12 Bionic Higher GPU frequency ~92%Better instruction set architecture Benchmarks Performance tests in popular benchmarks AnTuTu 9 The AnTuTu Benchmark measures CPU, GPU, RAM, and I/O performance in different scenarios CPU 141555 127267 GPU 184296 196436 Memory 62560 99161 UX 131223 104297 Total score 522806 531765 AnTuTu results from iOS and Android are not directly comparable! They won't affect NanoReview scores. Submit your AnTuTu result GeekBench 5 The GeekBench test shows raw single-threaded and multithreaded CPU performance Image compression Mpixels/s Mpixels/s Face detection 21 images/s images/s Speech recognition words/s words/s Machine learning 48 images/s images/s Camera shooting images/s images/s HTML 5 Mnodes/s Mnodes/s SQLite Krows/s 745 Krows/s 3DMark A cross-platform benchmark that assesses graphics performance in Vulkan Metal 3DMark Wild Life Performance Stability 91% 69% Graphics test 18 FPS 31 FPS Score 3096 5218 Gaming Table of average FPS and graphics settings in mobile games PUBG Mobile 58 FPS [Ultra] - Call of Duty Mobile 56 FPS [Ultra] - Fortnite 28 FPS [Ultra] - Shadowgun Legends 51 FPS [Ultra] - World of Tanks Blitz 59 FPS [Ultra] - Mobile Legends Bang Bang 57 FPS [Ultra] - Device Xiaomi Mi 9T Pro 1080 x 2340 - We provide average results. FPS may differ, depending on game version, OS and other factors. Specifications Full list of technical specifications of Snapdragon 855 and A12 Bionic CPU Architecture 1x GHz – Cortex-A76 Kryo 485 Gold3x GHz – Cortex-A76 Kryo 485 Gold4x GHz – Cortex-A55 Kryo 485 Silver 2x GHz – Vortex4x GHz – Tempest Cores 8 6 Frequency 2840 MHz 2490 MHz Instruction set L1 cache 512 KB 128 KB L2 cache 1 MB 8 MB L3 cache 2 MB - Process 7 nanometers 7 nanometers Transistor count billion billion TDP 6 W 6 W Graphics GPU name Adreno 640 Apple A12 Bionic GPU Architecture Adreno 600 - GPU frequency 585 MHz 1125 MHz Execution units 2 4 Shading units 384 - FLOPS 899 Gigaflops 560 Gigaflops Vulkan version - OpenCL version - DirectX version 12 - Memory Memory type LPDDR4X LPDDR4X Memory frequency 2133 MHz 2133 MHz Bus 4x 16 Bit 4x 16 Bit Max bandwidth Gbit/s Gbit/s Max size 16 GB 4 GB Multimedia ISP Neural processor NPU Hexagon 690 Neural Engine Storage type UFS NVMe Max display resolution 3840 x 2160 2688 x 1242 Max camera resolution 1x 192MP, 2x 22MP 1x 32MP, 2x 12MP Video capture 4K at 120FPS 4K at 60FPS Video playback 8K at 30FPS, 4K at 120FPS 4K at 60FPS Video codecs VP8, VP9 Motion JPEG Audio codecs AAC, AIFF, CAF, MP3, MP4, WAV AAC, AAC‑LC, Apple Lossless, HE‑AAC, Linear PCM, AAX и AAX+, HE‑AAC v2, MP3 Connectivity Modem X24 LTE, X50 5G Intel XMM 7560 4G support LTE Cat. 20 LTE Cat. 18 5G support Yes No Download speed Up to 5000 Mbps Up to 1000 Mbps Upload speed Up to 1240 Mbps Up to 350 Mbps Wi-Fi 6 5 Bluetooth Navigation GPS, GLONASS, Beidou, Galileo, QZSS, SBAS GPS, GLONASS, Beidou, Galileo Cast your vote So, which SoC would you choose? Snapdragon 855 1244 Total votes 2665 Related Comparisons Comments Please give your opinion on the comparison of A12 Bionic and Snapdragon 855, or ask any questions Ronaldo SUUIII 24 November 2022 2318 Why does the iphone 8 plus perform better than the iphone X and iphone 8? +51 Reply RuTH 02 September 2022 0316 I have an iPad mini 5 and Sharp Aquos R3, which are all good. Play games using iPad mini 5, play Apex or use a social apps use Sharp Aquos R3 because have 120hz. +8 Reply Nobody 01 December 2021 1137 The funny thing is this lowly Sharp Aquos R3 has SD855 with a price tag of around $130 but for Ipad Mini 5 around 5 times more expensive XD +28 Reply Ur 15 November 2021 1522 Keep in mind the SD 855 is much cheaper +21 Reply Namdi 15 October 2021 1141 Well experience justified more. Apple always has better performance and optimisation. Android scale to run short however android Snapdragon turns to be in equilibrium with apple but upto some extent. Don't mind but apple always ahead +11 Reply chris Do 28 July 2021 2047 Their performance nearly the same but apple always have better optimization so i’ll go for a12 +33 Reply Do chris 30 September 2021 0211 Their performance nearly the same but mi 9T pro had half the price and even more than half, can't complain much for 855 +18 Reply
Qualcomm Snapdragon 855+ / 855 Plus vs Apple A12 Bionic vs Qualcomm Snapdragon 855Qualcomm Snapdragon 855+ / 855 Plus ► remove from comparisonThe Qualcomm Snapdragon 855 Plus 855+ Mobile Platform is a high-end smartphone and tablet SoC that Qualcomm announced in 2019. Compared to the normal Snapdragon 855, the 855 Plus offers higher clock speeds of the GPU and CPU. The SoC integrates a fast Prime Core’ that clocks up to GHz up from GHz in the 855 and three further fast ARM Cortex-A76 performance cores, which can reach up to GHz. These are complemented by four power-saving ARM Cortex-A55 cores that clock up to a maximum of GHz. The SoC also integrates the new X24 LTE modem that Qualcomm promises will deliver up to 2 Gbit/s maximum download speed over LTE and up to 316 Mbit/s upload speeds. The Snapdragon 855 can be configured with the company’s new X50 5G modem too. Qualcomm has also improved the integrated Wi-Fi modem, which is Wi-Fi 6-ready, has 8x8 Sounding and supports up to ay Wi-Fi. The Wi-Fi modem can utilise the 60 GHz mmWave band for up to 10 Gbit/s internet speeds. The Hexagon 690 DSP has undergone the most revisions of that which Qualcomm has integrated into the Snapdragon 855. The new DSP incorporates a neural processing unit NPU with dedicated Tensor-cores that can execute up to 7 trillion operations per second in conjunction with the CPU and GPU. In short, the Snapdragon 855 should be three times faster than the Snapdragon 845 and two times faster than the Kirin 980 SoC. The Snapdragon 855 also has a Spectra 380 ISP onboard, which is the world’s first chip to incorporate a Computer Vision Engine CV-ISP that can perform depth calculations in videos at up to 60 FPS. The Snapdragon 855 should deliver real-time portrait modes or be able to detect objects with relatively low power consumption. The built-in memory controller supports up to 16 GB LPDDR4x RAM 4 x 16-bit. As the SD855, the 855+ integrates an Adreno 640 graphics card that is now higher clocked and should offer a 15% higher performance. Qualcomm will manufacturer the Snapdragon 855+ at the Taiwan Semiconductor Manufacturing Company TSMC using a 7 nm FinFET process. Apple A12 Bionic ► remove from comparisonThe Apple A12 Bionic is a System on a Chip SoC from Apple that is found in the iPhone Xs and Xr. It was announced late 2018 and offers 6 cores divided in 2 performance cores and four power efficiency cores. Compared to the previous A11 Bionic, the A12 should offer a 15% improved CPU performance for the performance cores and a 50% lower power consumption for the efficiency cores both according to Apple. The chip also includes a new GPU that is advertised as 50% faster, the M12 Motion co-processor and a Neural Engine with 8 cores for up to 5 trillion operations per second. With billion transistors, the A12 Bionic is a big chip especially compared to the Snapdragon 835 3 Billion or a Skylake desktop quad-core Soc Billion. Compared to the A11, the A12 integrates 60% more Snapdragon 855 ► remove from comparisonThe Qualcomm Snapdragon 855 Mobile Platform is a high-end smartphone and tablet SoC that Qualcomm announced in December 2018. The SoC integrates a fast Prime Core’ that clocks up to GHz and three further fast ARM Cortex-A76 performance cores, which can reach up to GHz. These are complemented by four power-saving ARM Cortex-A55 cores that clock up to a maximum of GHz. The higher Prime Core’ clock speed should provide significantly better single core performance than the Snapdragon 845, but we suspect that the Snapdragon 855 will fall short of the Apple A12 Bionic. The new SoC should have up to 45% faster single-core performance and 35% multi-core performance than its predecessor. Qualcomm praises the Snapdragon 855’s ability to maintain its performance when faced with sustained load, beating the Apple A12 Bionic SoC and the HiSilicon Kirin 980. The SoC also integrates the new X24 LTE modem that Qualcomm promises will deliver up to 2 Gbit/s maximum download speed over LTE and up to 316 Mbit/s upload speeds. The Snapdragon 855 can be configured with the company’s new X50 5G modem too. Qualcomm has also improved the integrated Wi-Fi modem, which is Wi-Fi 6-ready, has 8x8 Sounding and supports up to ay Wi-Fi. The Wi-Fi modem can utilise the 60 GHz mmWave band for up to 10 Gbit/s internet speeds. The Hexagon 690 DSP has undergone the most revisions of that which Qualcomm has integrated into the Snapdragon 855. The new DSP incorporates a neural processing unit NPU with dedicated Tensor-cores that can execute up to 7 trillion operations per second in conjunction with the CPU and GPU. In short, the Snapdragon 855 should be three times faster than the Snapdragon 845 and two times faster than the Kirin 980 SoC. The Snapdragon 855 also has a Spectra 380 ISP onboard, which is the world’s first chip to incorporate a Computer Vision Engine CV-ISP that can perform depth calculations in videos at up to 60 FPS. The Snapdragon 855 should deliver real-time portrait modes or be able to detect objects with relatively low power consumption. The built-in memory controller supports up to 16 GB LPDDR4x RAM 4 x 16-bit. Moreover, the Adreno 640 has 50% more compute units ALUs than the Adreno 630, while Qualcomm claims that it should be 20% faster than its predecessor. We currently do not know what clock speeds the Adreno 640 will operate at as Qualcomm did not announce these during the announcement of the Snapdragon 855. Qualcomm will manufacturer the Snapdragon 855 at the Taiwan Semiconductor Manufacturing Company TSMC using a 7 nm FinFET process. The switch to 7 nm manufacturing should make the SD855 20% more efficient than the SD845. Qualcomm has not officially announced the thermal design power TDP of the SD855, but we suspect that the SoC will reach a maximum of 5 W and will average around W under load. BenchmarksPerformance Rating - Geekbench PCM Work, Sling Shot Physics, Antutu v8 CPU - SD 855+ ...Qualcomm Snapdragon 855+ / 855 Plus...Performance Rating - Geekbench PCM Work, Sling Shot Physics, Antutu v8 CPU - SD 855 3DMark - 3DMark Ice Storm Unlimited Physicsmin 30069 avg 34737 median 32129 27% max 42240 Points min 27400 avg 27548 median 27547 23% max 27717 Points min 20636 avg 32923 median 31198 26% max 45072 Points 3DMark - 3DMark Sling Shot Extreme ES Unlimited Physicsmin 3137 avg 4371 median 4659 58% max 4737 Points min 2723 avg 3064 median 3056 38% max 3347 Points min 1934 avg 3937 median 4112 52% max 5024 Points 3DMark - 3DMark Sling Shot ES Unlimited Physicsmin 3143 avg 4323 median 65% max 4725 Points min 2880 avg 3129 median 2961 42% max 3493 Points min 2345 avg 3892 median 58% max 4703 Points Geekbench - Geekbench - 64 Bit Single-Coremin 738 avg 751 median 751 32% max 764 Points min 1116 avg 1118 median 48% max 1119 Points min 552 avg 713 median 744 32% max 751 Points Geekbench - Geekbench - 64 Bit Multi-Coremin 2652 avg 2659 median 9% max 2665 Points min 2772 avg 2815 median 10% max 2857 Points min 2164 avg 2622 median 2694 9% max 2856 Points Geekbench - Geekbench 64 Bit Single-Coremin 761 avg 782 median 3% max 792 Points min 725 avg 742 median 742 3% max 750 Points Geekbench - Geekbench 64 Bit Multi-Coremin 2519 avg 2788 median 9% max 2940 Points min 2441 avg 2616 median 8% max 2852 Points Geekbench - - Geekbench - 64 Bit Single-Coremin 3603 avg 3654 median 3654 38% max 3705 Points min 4750 avg 4779 median 4774 49% max 4824 Points min 3406 avg 3480 median 3491 36% max 3537 Points Geekbench - - Geekbench - 64 Bit Multi-Coremin 9705 avg 10547 median 12% max 11388 Points min 11244 avg 11418 median 11480 13% max 11598 Points min 10187 avg 10955 median 12% max 11388 Points Geekbench - Geekbench 64 Bit Single-Coremin 3295 avg 3548 median 3548 51% max 3801 Points Geekbench - Geekbench 64 Bit Multi-Coremin 10163 avg 10529 median 10529 26% max 10895 Points Geekbench 3 - Geekbench 3 64 Bit Multi-CoreGeekbench 3 - Geekbench 3 64 Bit Single-CoreGeekbench 3 - Geekbench 3 32 Bit Multi-CoreGeekbench 3 - Geekbench 3 32 Bit Single-CoreGeekbench 2 - 32 Bit - Geekbench Streammin 1658 avg 1926 median 1926 16% max 2194 Points Geekbench 2 - 32 Bit - Geekbench Memorymin 3919 avg 4247 median 4247 39% max 4575 Points Geekbench 2 - 32 Bit - Geekbench Floating Pointmin 11986 avg 14903 median 29% max 17819 Points Geekbench 2 - 32 Bit - Geekbench Integermin 5470 avg 6620 median 13% max 7769 Points Geekbench 2 - 32 Bit - Geekbench Total Scoremin 7059 avg 8575 median 22% max 10090 Points Mozilla Kraken - Kraken Total Score *min 2007 avg 2054 median 2032 2% max 2134 ms min 603 avg 627 median 1% max 653 ms min 1852 avg 2147 median 2114 2% max 2611 ms Sunspider - Sunspider Total Score *Octane V2 - Octane V2 Total Scoremin 23781 avg 24606 median 24571 23% max 25353 Points min 41367 avg 42312 median 40% max 43280 Points min 17011 avg 23240 median 23937 23% max 25640 Points WebXPRT 3 - WebXPRT 3 Scoremin 89 avg median 98 23% max 111 Points min 155 avg median 37% max 166 Points min 90 avg median 25% max 129 Points AnTuTu v6 - AnTuTu v6 Total Scoremin 239512 avg 255436 median 255924 87% max 268271 Points AnTuTu v7 - AnTuTu v7 MEMmin 7312 avg 9998 median 31% max 12409 Points min 9188 avg 13484 median 13816 42% max 19329 Points min 59570 avg 65177 median 66701 82% max 67735 Points min 53266 avg 73247 median 74726 92% max 79058 Points AnTuTu v7 - AnTuTu v7 GPUmin 129473 avg 147840 median 151931 47% max 158023 Points min 67537 avg 152512 median 156467 49% max 191221 Points AnTuTu v7 - AnTuTu v7 CPUmin 106600 avg 124761 median 127986 78% max 136472 Points min 85969 avg 115207 median 118475 73% max 127208 Points AnTuTu v7 - AnTuTu v7 Total Scoremin 302955 avg 347775 median 358800 63% max 370545 Points min 217967 avg 354450 median 368232 65% max 398720 Points AnTuTu v8 - AnTuTu v8 UXmin 66276 avg 72044 median 71855 60% max 78191 Points min 71574 avg 71607 median 60% max 71639 Points min 51228 avg 63930 median 64229 54% max 72343 Points AnTuTu v8 - AnTuTu v8 MEMmin 64026 avg 80567 median 67% max 92659 Points min 45962 avg 56767 median 56767 46% max 67572 Points min 52596 avg 61638 median 59373 48% max 75544 Points AnTuTu v8 - AnTuTu v8 GPUmin 169591 avg 184179 median 184036 34% max 199051 Points min 166588 avg 170290 median 170290 31% max 173992 Points min 158097 avg 167704 median 167146 31% max 175532 Points AnTuTu v8 - AnTuTu v8 CPUmin 132673 avg 139174 median 139170 50% max 145684 Points min 98561 avg 122385 median 122385 44% max 146209 Points min 114777 avg 135173 median 139365 50% max 140166 Points AnTuTu v8 - AnTuTu v8 Total Scoremin 462125 avg 478464 median 474972 46% max 501784 Points min 411764 avg 421049 median 421048 41% max 430333 Points min 376698 avg 428445 median 432658 42% max 451559 Points Antutu v9 - AnTuTu v9 Total ScoreAntutu v9 - AnTuTu v9 CPUPassMark PerformanceTest Mobile V1 - PerformanceTest Mobile V1 CPU Testsmin 237506 avg 249793 median 249792 33% max 262079 Points min 482773 avg 486852 median 486197 64% max 491585 Points min 197214 avg 236383 median 246456 32% max 265478 Points PCMark for Android - PCM f. Android Computer Visionmin 6325 avg 7543 median 7424 39% max 8880 Points min 5121 avg 6872 median 33% max 12391 Points PCMark for Android - PCM f. Android Storagemin 13484 avg 15895 median 34% max 18305 Points min 5578 avg 11793 median 11067 24% max 18491 Points PCMark for Android - PCM f. Android Work Score 8702 avg 10315 median 68% max 11690 Points min 8342 avg 9710 median 9664 63% max 11440 Points PCMark for Android - PCM f. Android Work Scoremin 10286 avg 13201 median 12786 64% max 15510 Points min 10330 avg 12161 median 11890 59% max 14439 Points Average Benchmarks Qualcomm Snapdragon 855+ / 855 Plus → 100% n=23Average Benchmarks Apple A12 Bionic → 107% n=23Average Benchmarks Qualcomm Snapdragon 855 → 95% n=23 - Range of benchmark values for this graphics card - Average benchmark values for this graphics card* Smaller numbers mean a higher performance1 This benchmark is not used for the average 13. 1445400 checking url part for id 11491 +0s ... 0s 1 checking url part for id 10166 +0s ... 0s 2 checking url part for id 11011 +0s ... 0s 3 not redirecting to Ajax server +0s ... 0s 4 did not recreate cache, as it is less than 5 days old! Created at Mon, 12 Jun 2023 135518 +0200 + ... 5 composed specs + ... 6 did output specs +0s ... 7 getting avg benchmarks for device 11491 + ... 8 got single benchmarks 11491 + ... 9 getting avg benchmarks for device 10166 + ... 10 got single benchmarks 10166 + ... 11 getting avg benchmarks for device 11011 + ... 12 got single benchmarks 11011 + ... 13 got avg benchmarks for devices +0s ... 14 No cached benchmark found, getting uncached values + ... 15 No cached benchmark found, getting uncached values + ... 16 min, max, avg, median took s + ... 17 return log +0s ...
a12 bionic vs snapdragon 855